Commutative semigroups

Abbreviation: CSgrp

Definition

A commutative semigroup is a semigroups $\mathbf{S}=\langle S,\cdot \rangle $ such that

$\cdot $ is commutative: $xy=yx$

Definition

A commutative semigroup is a structure $\mathbf{S}=\langle S,\cdot \rangle $, where $\cdot $ is an infix binary operation, called the semigroup product, such that

$\cdot $ is associative: $(xy)z=x(yz)$

$\cdot $ is commutative: $xy=yx$

Morphisms

Let $\mathbf{S}$ and $\mathbf{T}$ be commutative semigroups. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:Sarrow T$ that is a homomorphism:

$h(xy)=h(x)h(y)$

Examples

Example 1: $\langle \mathbb{N},+\rangle $, the natural numbers, with additition.

Basic results

Properties

Finite members

$\begin{array}{lr} [[Search for finite commutative semigroups]] f(1)= &1\\ f(2)= &3\\ f(3)= &12\\ f(4)= &58\\ f(5)= &325\\ f(6)= &2143\\ f(7)= &17291\\ \end{array}$

Subclasses

Superclasses

References