Differences

This shows you the differences between two versions of the page.

commutative_bck-algebras [2010/07/29 15:46] (current)
Line 1: Line 1:
 +=====Commutative BCK-algebras=====
 +
 +Abbreviation: **ComBCK**
 +====Definition====
 +A \emph{commutative BCK-algebra} is a structure $\mathbf{A}=\langle A,\cdot ,0\rangle$ of type $\langle 2,0\rangle$ such that
 +
 +
 +(1):  $((x\cdot y)\cdot (x\cdot z))\cdot (z\cdot y) = 0$
 +
 +
 +(2):  $x\cdot 0 = x$
 +
 +
 +(3):  $0\cdot x = 0$
 +
 +
 +(4):  $x\cdot y=y\cdot x= 0 \Longrightarrow x=y$
 +
 +
 +(5):  $x\cdot (x\cdot y) = y\cdot (y\cdot x)$
 +
 +Remark:
 +Note that the commutativity does not refer to the operation $\cdot$, but rather to the
 +term operation $x\wedge y=x\cdot (x\cdot y)$, which turns out to be a meet with respect
 +to the following partial order:
 +
 +$x\le y \iff x\cdot y=0$, with $0$ as least element.
 +
 +====Definition====
 +A \emph{commutative BCK-algebra} is a [[BCK-algebra]]
 +$\mathbf{A}=\langle A,\cdot ,0\rangle$ such that
 +
 +$x\cdot (x\cdot y) = y\cdot (y\cdot x)$
 +
 +==Morphisms==
 +Let $\mathbf{A}$ and $\mathbf{B}$ be commutative BCK-algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
 +
 +$h(x\cdot y)=h(x)\cdot h(y) \mbox{ and } h(0)=0$
 +
 +====Examples====
 +Example 1:
 +
 +====Basic results====
 +
 +
 +====Properties====
 +^[[Classtype]]                        |variety |
 +^[[Equational theory]]                | |
 +^[[Quasiequational theory]]           | |
 +^[[First-order theory]]               | |
 +^[[Locally finite]]                   |no |
 +^[[Residual size]]                    |unbounded |
 +^[[Congruence distributive]]          |yes |
 +^[[Congruence modular]]               |yes |
 +^[[Congruence n-permutable]]          |yes, $n=3$ |
 +^[[Congruence regular]]               | |
 +^[[Congruence uniform]]               | |
 +^[[Congruence extension property]]    | |
 +^[[Definable principal congruences]]  |no |
 +^[[Equationally def. pr. cong.]]      |no |
 +^[[Amalgamation property]]            | |
 +^[[Strong amalgamation property]]     | |
 +^[[Epimorphisms are surjective]]      | |
 +====Finite members====
 +
 +$\begin{array}{lr}
 +f(1)= &1\\
 +f(2)= &\\
 +f(3)= &\\
 +f(4)= &\\
 +f(5)= &\\
 +f(6)= &\\
 +\end{array}$
 +
 +====Subclasses====
 +[[Tarski algebras]]
 +
 +====Superclasses====
 +[[BCK-algebras]]
 +
 +
 +====References====
 +
 +[(Ln19xx>
 +)]
 +
 +
 +
 +
 +