Differences
This shows you the differences between two versions of the page.
— |
clifford_semigroups [2010/07/29 15:46] (current) |
||
---|---|---|---|
Line 1: | Line 1: | ||
+ | =====Clifford semigroups===== | ||
+ | Abbreviation: **CliffSgrp** | ||
+ | ====Definition==== | ||
+ | A \emph{Clifford semigroup} is an [[inverse semigroups]] $\mathbf{S}=\langle | ||
+ | S,\cdot,^{-1}\rangle $ that is also [[completely regular semigroups]]. | ||
+ | ====Definition==== | ||
+ | A \emph{Clifford semigroup} is a structure $\mathbf{S}=\langle | ||
+ | S,\cdot,^{-1}\rangle $ such that | ||
+ | |||
+ | |||
+ | $\cdot$ is associative: $(xy)z=x(yz)$ | ||
+ | |||
+ | |||
+ | $^{-1}$ is an inverse: $xx^{-1}x=x$, $(x^{-1})^{-1}=x$ | ||
+ | |||
+ | |||
+ | $xx^{-1}=x^{-1}x$, $xx^{-1}y^{-1}y=y^{-1}yxx^{-1}$, $xx^{-1}=x^{-1}x$ | ||
+ | ==Morphisms== | ||
+ | Let $\mathbf{S}$ and $\mathbf{T}$ be Clifford semigroups. A morphism from | ||
+ | $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\rightarrow T$ that is a | ||
+ | homomorphism: | ||
+ | |||
+ | $h(xy)=h(x)h(y)$, $h(x^{-1})=h(x)^{-1}$ | ||
+ | |||
+ | ====Examples==== | ||
+ | Example 1: | ||
+ | |||
+ | ====Basic results==== | ||
+ | |||
+ | ====Properties==== | ||
+ | ^[[Classtype]] |Variety | | ||
+ | ^[[Equational theory]] | | | ||
+ | ^[[Quasiequational theory]] | | | ||
+ | ^[[First-order theory]] | | | ||
+ | ^[[Locally finite]] |No | | ||
+ | ^[[Residual size]] | | | ||
+ | ^[[Congruence distributive]] |No | | ||
+ | ^[[Congruence modular]] |No | | ||
+ | ^[[Congruence n-permutable]] |No | | ||
+ | ^[[Congruence regular]] |No | | ||
+ | ^[[Congruence uniform]] |No | | ||
+ | ^[[Congruence extension property]] |No | | ||
+ | ^[[Definable principal congruences]] | | | ||
+ | ^[[Equationally def. pr. cong.]] |No | | ||
+ | ^[[Amalgamation property]] |No | | ||
+ | ^[[Strong amalgamation property]] |No | | ||
+ | ^[[Epimorphisms are surjective]] |Yes | | ||
+ | ====Finite members==== | ||
+ | |||
+ | $\begin{array}{lr} | ||
+ | f(1)= &1\\ | ||
+ | f(2)= &\\ | ||
+ | f(3)= &\\ | ||
+ | f(4)= &\\ | ||
+ | f(5)= &\\ | ||
+ | f(6)= &\\ | ||
+ | f(7)= &\\ | ||
+ | \end{array}$ | ||
+ | |||
+ | ====Subclasses==== | ||
+ | [[Groups]] | ||
+ | |||
+ | ====Superclasses==== | ||
+ | [[Completely regular semigroups]] | ||
+ | |||
+ | [[Inverse semigroups]] | ||
+ | |||
+ | |||
+ | ====References==== | ||
+ | |||
+ | [(Ln19xx> | ||
+ | )] |
Trace: