# Differences

This shows you the differences between two versions of the page.

cancellative_partial_monoids [2018/08/04 18:24] (current)
jipsen created
Line 1: Line 1:
+=====Cancellative partial monoids=====
+
+Abbreviation: **CanPMon**
+
+====Definition====
+A \emph{cancellative partial monoid} is a [[partial monoid]] such that
+
+$\cdot$ is \emph{left-cancellative}: $x\cdot y=x\cdot z\ne *$ implies $y=z$ and
+
+$\cdot$ is \emph{right-cancellative}: $x\cdot z=y\cdot z\ne *$ implies $x=y$.
+
+==Morphisms==
+Let $\mathbf{A}$ and $\mathbf{B}$ be cancellative partial monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
+$h(e)=e$ and
+if $x\cdot y\ne *$ then $h(x \cdot y)=h(x) \cdot h(y)$.
+
+====Examples====
+Example 1:
+
+====Basic results====
+
+
+====Properties====
+
+^[[Classtype]]                        |first-order  |
+^[[Equational theory]]                | |
+^[[Quasiequational theory]]           | |
+^[[First-order theory]]               | |
+^[[Locally finite]]                   | |
+^[[Residual size]]                    | |
+^[[Congruence distributive]]          | |
+^[[Congruence modular]]               | |
+^[[Congruence $n$-permutable]]        | |
+^[[Congruence regular]]               | |
+^[[Congruence uniform]]               | |
+^[[Congruence extension property]]    | |
+^[[Definable principal congruences]]  | |
+^[[Equationally def. pr. cong.]]      | |
+^[[Amalgamation property]]            | |
+^[[Strong amalgamation property]]     | |
+^[[Epimorphisms are surjective]]      | |
+
+====Finite members====
+
+See http://mathv.chapman.edu/~jipsen/uajs/CanPMon.html
+
+$\begin{array}{lr} + f(1)= &1\\ + f(2)= &2\\ + f(3)= &3\\ + f(4)= &9\\ + f(5)= &21\\ + f(6)= &125\\ + f(7)= &\\ + f(8)= &\\ + f(9)= &\\ + f(10)= &\\ +\end{array}$
+
+====Subclasses====
+[[Cancellative commutative partial monoids]]
+
+[[Cancellative monoids]]
+
+
+====Superclasses====
+[[Partial monoids]]
+
+
+====References====
+
+

##### Toolbox 