Differences

This shows you the differences between two versions of the page.

bilattices [2012/06/16 00:17]
jipsen
bilattices [2012/06/16 00:18] (current)
jipsen
Line 4: Line 4:
====Definition==== ====Definition====
-A \emph{bilattice} is a structure $\mathbf{L}=\langle L,\vee,\wedge,\oplus,\otimes,\neg,rangle$ such that+A \emph{bilattice} is a structure $\mathbf{L}=\langle L,\vee,\wedge,\oplus,\otimes,\neg\rangle$ such that
$\langle L,\vee,\wedge\rangle $ is a [[lattice]], $\langle L,\vee,\wedge\rangle $ is a [[lattice]],
Line 15: Line 15:
==Morphisms== ==Morphisms==
-Let $\mathbf{L}$ and $\mathbf{M}$ be bounded lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a+Let $\mathbf{L}$ and $\mathbf{M}$ be bilattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a
homomorphism: homomorphism: