BCK-lattices

Abbreviation: BCKlat

Definition

A BCK-lattice is a structure $\mathbf{A}=\langle A,\vee,\wedge,\rightarrow,1\rangle$ of type $\langle 2,2,2,0\rangle$ such that

$\langle A,\vee,\rightarrow,1\rangle$ is a BCK-join-semilattice

$\langle A,\wedge,\rightarrow,1\rangle$ is a BCK-meet-semilattice

Remark: $x\le y \iff x\rightarrow y=1$ is a partial order, with $1$ as greatest element, and $\vee$, $\wedge$ are a join and meet for this order. 1)

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be BCK-lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\rightarrow y)=h(x)\rightarrow h(y)$ and $h(1)=1$.

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$

Subclasses

Superclasses

References


1) Pawel M. Idziak, Lattice operation in BCK-algebras, Math. Japon., 29, 1984, 839–846 MRreview